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We study the response of two coupled FitzHugh-Nagumo systems to heterogeneous external inputs. The
latter, modeled by periodic parametric stimuli, force the uncoupled excitable systems into a regime of chaotic
firing. Due to parameter dispersion involved in randomly distributed amplitudes and/or phases of the external
forces the units are nonidentical and their firing events will be asynchronous. Interest is focused on mutually
synchronized spikings arising through the coupling. It is demonstrated that the phase difference of the two
external forces crucially affects the onset of spike synchronization as well as the resulting degree of synchrony.
For large phase differences the degree of spike synchrony is constricted to a maximal possible value and cannot
be enhanced upon increasing the coupling strength. We even found that overcritically strong couplings lead to
suppression of firing so that the units perform synchronous subthreshold oscillations. This effect, which we call
“firing death,” is due to a coupling-induced modification of the excitation threshold impeding spiking of the
units. In clear contrast, when only the amplitudes of the forces are distributed perfect spike synchrony is
achieved for sufficiently strong coupling.
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I. INTRODUCTION

The phenomenon of synchronization of coupled oscilla-
tors occurs in various fields �1–6�. With the observation of
synchronous firing of neurons �7,8�, which is assumed to
play a vital role for the information processing and coding in
the brain, the investigation of synchronization of coupled
units in the realm of neuroscience has attracted renewed in-
terest.

To understand the underlying mechanisms of the nonlin-
ear dynamics of neural units that lead to complex neuron
activities such as synchronous, asynchronous, and chaotic
firing behavior studying the response of interacting neurons
to external inputs is indispensable �9,10�. Particularly for en-
coding external signals synchronization provides a possible
mechanism �11�. Neuronal activity is reflected in a signifi-
cant departure of the electrical cross membrane potential of
the neuron from its quiescent state which is caused by a
stimulus above a certain threshold in amplitude. This gener-
ates a spike that decays back to quiescence during a refrac-
tory period in which further spike generation is inhibited
�12�. This feature is typical for an excitable system. A model
of an excitable media is represented by the FitzHugh-
Nagumo �FHN� system �13,14� which is widely used as a
simplified version of the Hodgkin Huxley system �15� in
neuroscience to study neural activities as nonlinear phenom-
ena. In the frame of the FHN model neuronal excitability is
described by a two-dimensional relaxation oscillator. A small
but finite perturbation away from a steady state results in a
large excursion followed by a refractory period at the end of
which the system returns to the steady state. With appropriate
changes of the excitability parameter or with external inputs
it is also possible to evoke in the �excitable� FHN system an
oscillatory regime where it exhibits repetitive firings consist-
ing of a train of spikes.

The response of a spontaneously oscillating system to ex-
ternal periodic drivings involves entrainment for certain val-

ues of the amplitude and frequency of the perturbation, qua-
siperiodicity, and chaos �16–23�. Such qualitatively distinct
behavior plays a role in many systems with biological,
chemical, and physical backgrounds �24�.

Our study deals with the stimulation of relaxation oscilla-
tions in the coupled dynamics of two activator-inhibitor
units. The purpose is to understand the implications of the
width and amount of parameter heterogeneity in the external
stimuli on the synchronization features of two coupled cha-
otic units. To be precise, we focus interest on mutually syn-
chronized spikings when the parameters of the external driv-
ings are chosen such that through the locally acting periodic
forces each �uncoupled� unit is brought into a regime of cha-
otic spiking. Moreover, due to the parameter dispersion the
units are nonidentical and hence, if uncoupled, the firing
events �even for identical initial conditions� of the units will
be asynchronous leading to a distribution of the spiking
times.

In the field of neurodynamics networks consisting of
coupled excitable and oscillatory units have been investi-
gated with view to the synchronization features �25–28�.
Concerning the role of heterogeneity it has been demon-
strated that diversity may even promote the instigation of
global oscillations in a heterogeneous excitable medium
�29�.

The key question that arises in our study then is: For
which extent of parameter dispersion, do completely syn-
chronous oscillations of the coupled units arise? In previous
studies, it has been argued that in certain systems of coupled
chaotic oscillators the oscillations become less and less inco-
herent with increasing coupling strength and eventually com-
plete synchronization is accomplished �10,30–34�. On the
other hand, it has been demonstrated that beyond a certain
coupling strength units within an oscillatory network can re-
ciprocally suppress their oscillations, dubbed “oscillation
death” �35�. The aim of our study is also to elucidate how the
coupling strength influences the synchronization of two
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coupled chaotic oscillators with a distribution of their local
driving terms.

The paper is organized as follows: In the next section we
introduce the model of the two coupled FHN units and
present a proof of complete synchronization. Afterwards the
interaction of two chaotically spiking units is studied where
attention is paid to the combined influence of the coupling
strength and parameter dispersion on the synchronization be-
havior. It is shown that the difference in the phases of the
parametric drivings has strong impact on synchrony. Finally
we summarize our results.

II. THE DRIVEN COUPLED FHN MODEL

We study the dynamics of two coupled FHN oscillators
obeying the following set of equations:

ẋ1 =
1

�
�x1 − x1

3 − y1� + ��x2 − x1� , �1�

ẏ1 = �x1 − �y1 + b + s1�t�y1, �2�

ẋ2 =
1

�
�x2 − x2

3 − y2� + ��x1 − x2� , �3�

ẏ2 = �x2 − �y2 + b + s2�t�y2, �4�

where xn and yn �n=1,2� refer to the activator �voltage� and
inhibitor �recovery� variable, respectively. Coupling extends
among the activator variables �electrical coupling�. � denotes
the coupling strength. The time separation between the fast
activator and slow inhibitor variable, respectively, is deter-
mined by the small quantity �. Each unit is subjected to an
external stimulus �current� sn�t� which is supposed to be
sinusoidal

sn�t� = − An cos��nt + �n
0� �5�

and forces parametrically the corresponding inhibitor vari-
able. Periodic forcing of the inhibitor variables in FHN sys-
tems was also considered in Ref. �36�. The amplitudes An,
frequencies �n, as well as phases �n

0 can be distributed in
some range. This is where heterogeneity enters in our model.
Thus our model system consists of two coupled nonidentical
FHN units. The parameter � in Eqs. �2� and �4� determines
the relaxation of the ionic concentration y when elevated
from its equilibrium level. Elevations are due to the opening
of ion stores regulated by ion channels. These are sensitive to
membrane variations the impact of which we attribute to the
last term in Eqs. �2� and �4� to time-dependent modulations
of the parameter � �also see Ref. �37��.

A. Complete synchronization

Here we prove the following synchronization theorem.
Theorem. Two coupled FHN units obeying Eqs. �1�–�4�

completely synchronize asymptotically and exponentially
fast irrespective of the initial conditions provided that the
following constraint is fulfilled:

� �
1

4
�3

�
+ � + 2�A − ��� , �6�

where A�0 denotes the amplitude of the equal driving force
s1�t�=s2�t�=−A cos��t+�0�.

Proof. The proof proceeds by showing that distance be-
tween the two trajectories d=��x2−x1�2+ �y2−y1�2, serving
as the synchronization measure, approaches asymptotically
zero. One gets

1

2

d

dt
d2 = dḋ = �x2 − x1����x2 − x1� − �x2

3 − x1
3� − �y2 − y1��/�

− 2��x2 − x1�	 + �y2 − y1����x2 − x1� − ��y2 − y1�

+ �s2y2 − s1y1�� . �7�

With the help of �x2−x1�2− �x2−x1��x2
3−x1

3�	 �x2−x1�2 we
get the following bounds for the right-hand side �RHS� of
Eq. �7�:

dḋ 	
1

�
��x2 − x1�2 − �x2 − x1��y2 − y1�� − 2��x2 − x1�2

+ ��x2 − x1��y2 − y1� + �A − ���y2 − y1�2. �8�

Expressing the terms on the RHS in polar coordinates

x2 − x1 = d cos 
, y2 − y1 = d sin 
 , �9�

with 
� �0,2�� we obtain

dḋ 	 �1

�
cos2 
 + 
� −

1

�
�cos 
 sin 
 + �A − ��sin2 
�d2

− 2�d2 cos2 
 . �10�

Finally, with the relations �cos 
 sin 
�	1/2, �cos2 
�	1,
and �sin2 
�	1 we arrive at the equation expressed in the
radial variable

ḋ 	 �� − 2��d , �11�

where we introduced the abbreviation

� =
3

2�
+

�

2
+ A − � . �12�

Consequently, solutions of the system

u̇ = �� − 2��u �13�

form an upper bound for d�t� in the sense that 0	d�t�
	u�t�. u�t� decays exponentially in time, i.e., u�t�
=u�0�exp�−
t�, provided the inequality


 
 � − 2� � 0 �14�

holds. From the last inequality we infer that the relation

� �
1

4

3

�
+ � + 2�A − ��� �15�

guarantees that 
 is always negative which concludes the
proof. Exponential decay of d�t� ensures that the synchro-
nized state is attained exponential fast.

From the inequality �15� we deduce that the more pro-
nounced the activator-inhibitor time scale separation is, i.e.,
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the smaller �, the larger the critical coupling strength that is
necessary to ensure synchronization. Notice that the expres-
sion for the critical coupling strength in Eq. �15� is indepen-
dent of the frequency and phase of the parametric forces
because merely their maximal amplitude A enters there. We
remark that the theorem does not state whether one finds the
system synchronized with the units in the regime of a steady
state or subthreshold oscillations or suprathreshold relaxation
oscillations. One cannot infer whether the synchronized mo-
tion is regular or in the chaotic regime. The relation �15� is of
relevance for the forthcoming investigations as it gives evi-
dence how the coupling strength � affects synchronization.

III. TWO COUPLED FHN SYSTEMS

Before we embark on the study of the coupled dynamics
we consider briefly a single driven FHN system

ẋ =
1

�
�x − x3 − y� , �16�

ẏ = �x − �y + b − A cos��t + �0�y . �17�

Throughout the paper we fix the parameters as follows:
�=0.01, b=0.6, �=1, �=1.5, so that the undriven system of
A=0 is in the excitable regime, i.e., there exist a unique
attractive rest point �x0 ,y0� and a thresholdlike behavior for
firing of the activator variable. More precisely, for subthresh-
old excitations away from the unique attractive equilibrium
the latter is ultimately approached whereas for suprathresh-
old excitations a large amplitude excursion in phase space
results being associated with a spike in the activator evolu-
tion.

A. Single driven FHN system

As far as the response of the unit to the periodic stimulus
for A�0 is concerned, different qualitative behavior is found
depending on the choice of the parameters of the driving
term. In this study we consider fixed frequency �=12 and
treat the amplitude A as the bifurcation parameter. The effect
of parameter changes is seen in Fig. 1 where we show the
bifurcation diagram of a single driven FHN system generated
from a stroboscopic plot at successive periods of the driving
force T=2� /�. Initially the FHN system is situated at the
single attracting equilibrium point. Under parametric forcing
with low amplitudes there result small subthreshold oscilla-
tions around the attractive fixed point. That is a supercritical
Hopf bifurcation takes place giving birth to a limit cycle with
nearly harmonic oscillations. Further increase of A results in
weak growth of the amplitude of the oscillations. As the
driving strength passes through the critical value A�0.59 the
amplitude of the oscillations suddenly rises significantly over
an exponentially small range of the parameter A. That is
large amplitude relaxation oscillations �spikes� are produced
�38�. Upon further increase of the parameter A the amplitude
of the limit cycle remains constant. This rapid change from
small amplitude limit cycle oscillations to large ones is
called the Canard phenomenon �38�. In our case the relax-
ation oscillations the period of the large amplitude relaxation

oscillations is five times that of the periodic force. Between
A=0.7 and 0.79 there is a band of chaotic solutions corre-
sponding to aperiodic spike trains. The intervals between two
successive spikes are characterized by small-amplitude �sub-
threshold� oscillations. More precisely, the system is excit-
able and possess a single stable rest state in form of a small-
amplitude �subthreshold� limit cycle. The occurrence of the
spikes is correlated with the periodic modification of the in-
hibitor nullcline according to y= ��x−b� / ��+s�t��. The driv-
ing term shifts the fixed point further away �if s�t��0� or
closer to �if s�t��0� the effective excitation threshold. Thus
near the maximum of the external force spiking becomes
more likely.

Increasing the amplitude beyond A=0.79 restores regular-
ity and renders the system oscillatory, i.e., periodic large-
amplitude oscillations along a limit cycle are generated being
entrained to the external forcing. As illustrated in Fig. 2 cha-
otic spiking behavior is obtained when the phase of the ex-
ternal driving is varied in the range �0� �0,2�� and the
amplitude is held fixed at A=0.73. Figure 1 shows that for
this amplitude and a phase �0=0 the dynamics is chaotic. In
general, chaotic evolution is encountered for amplitudes ly-
ing in the interval A� �0.70,0.79� no matter how the phase is
chosen which is verified by a corresponding positive maxi-
mal Lyapunov exponent. Figure 3 shows examples of chaotic
and regular spike trains.

B. Two coupled driven FHN systems

We now consider the dynamics when two driven FHN
units, where each of them for itself is in the chaotic spiking
regime, get coupled.

1. Stroboscopic plots

To illustrate the complexity of the coupled dynamics stro-
boscopic plots of the activator variables x1,2 as a function of

FIG. 1. �Color online� Bifurcation diagram of the rest state in
dependence of the amplitude of the driving force for a single driven
FHN system. The green dashed �red dashed dotted� line represents
the maximum �minimum� of the activators’ amplitudes. Parameters:
�=0.01, b=0.6, �=1, �=1.5, �=12, and �0=0.
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the coupling strength � are depicted in Fig. 4. The pair of
amplitudes A1,2 of the driving force was chosen randomly
from the interval of equally distributed amplitudes
An� �0.70,0.79�. Additionally the phases are also taken as

random from the range of equally distributed values
�n

0� �0,2��. In what follows we differentiate between two
cases of parameter heterogeneity in the forcing term.

�i� When the amplitudes A1,2 and phases �1,2
0 are chosen

at random from the interval �0.70, 0.79� and �0,2�� respec-
tively, which is referred to as forcing with random ampli-
tudes and random phases, and

�ii� As in �i� but with fixed phases �1,2
0 =�0, which is

referred to as forcing with only random amplitude.

Obviously, the amount of parameter heterogeneity is higher
in �i� than in �ii�. We report also briefly on the case of forcing
with fixed equal amplitudes and random phases. In the first
example shown in Fig. 4, as one realization of the random
amplitudes and phases, the two coupled FHN units still spike
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FIG. 2. �Color online� Bifurcation diagram of the rest state for a
single driven FHN system as a function of the phase of the driving
force �0� �0,2�� for an amplitude A=0.75. Remaining parameters
and assignment of the line types as in Fig. 1.
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FIG. 3. �Color online� Time evolution of the activator variable
x�t�. �a� Chaotic dynamics in the excitable regime. Amplitude of the
periodic driving force A=0.73 remaining parameters as in Fig. 1.
�b� Large-amplitude oscillations showing entrainment to the peri-
odic driving force with amplitude A=0.81.
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FIG. 4. �Color online� Stroboscopic plot for two coupled FHN
units showing the activator variable x1 �a� and x2 �b� as a function
of the coupling strength �. The two driving amplitudes and phases
were chosen at random from the intervals A� �0.7,0.79� and
�� �0,2�� respectively with values A1=0.757, A2=0.780, �1

0

=3.969 and �2
0=5.559. Remaining parameters and assignment of

line style as in Fig. 1.
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repetitively for ��3.08. Furthermore in the range 0	�
�0.46 and 2.38	�	3.08 the dynamics is chaotic while in
between these two chaotic bands phase locking to the peri-
odic stimulation is observed. Notably for ��3.08 spiking
gets annihilated due to the coupling and the dynamics exhib-
its only small amplitude oscillations that are entrained to the
periodic forcing. Moreover, the two coupled oscillators
evolve synchronously and the amplitudes of these oscilla-
tions are not affected by changes of the coupling strength �at
least in the interval 3.08��	10�. This behavior �albeit
small amplitude oscillations prevail in our case� is reminis-
cent of oscillation death where the return of the dynamics of
coupled FHN units to the quiescent regime is induced by the
coupling �35�. Since in our case the coupling-induced transi-
tion proceeds from large-amplitude excitations to small-
amplitude oscillations around the quiescent state we call it
“firing death.” For later use we quote here the differences of
the driving forces’ amplitudes A1−A2=−0.023 and phases
�1

0−�2
0=−1.621. The occurrence of the firing death can be

explained on the basis of the excitability property of the
coupled FHN units. Let us recall that for strong time scale
separation the solution of the system �16� and �17� spends
most of its time close to slow manifolds S1,2 that is deter-
mined by the activator nullclines

S1:y1 = x1 − x1
3 + ���x2 − x1� �18�

and

S2:y2 = x2 − x2
3 + ���x1 − x2� . �19�

Only for appropriate and strong enough perturbations can
the solution be moved away from the stable rest state on one
branch of S1,2. Apart from S1,2 the solution is then well ap-
proximated by straight lines yn=const until it gets close to
the other branch of S1,2. The solution follows this part of S1,2
until a critical point close to the local maximum is reached
where the solution leaves S1,2 again to re-approach in a
straight line the starting branch of S1,2. Thus escaping from
S1,2 is vital for the instigation of a large-amplitude excitation
oscillation, i.e., a firing event. As noted above the excitation
threshold is overcome when the external forces s1,2�t� pass
through their maximum which triggers the solution in the
region to the right of S1,2. In Fig. 5 we depict a projection of
the solution on the x1−x2 plane. The direction of rotation
proceeds clockwise. Notice the strong asymmetry of the x1
−x2 orbit due to the triggering of the subthreshold oscilla-
tions by the external forces with markedly different phases.
We indicate those values of the activator variables for which
the solution is beneath the slow manifolds S1,2, i.e., for which

y1�t� − �x1�t� − x1
3�t� + ���x2 − x1�� � 0 �20�

y2�t� − �x2�t� − x2
3�t� + ���x1 − x2�� � 0. �21�

For the instigation of firing the solution needs to be be-
neath S1,2 because only then the activator variables x1,2 lie in
the region where ẋ1,2�0. Then the trajectory can undergo
large phase space excursions to the right branch of the acti-
vator nullclines S1,2. From the figures one infers that when
the activator variables reach their maximum �and are about

to depart from S1,2 to overcome the excitation threshold� the
solution turn immediately to enter the region for which it
comes to lie above the slow manifold. This is due to the fact
that the large phase shift between the two activator variables
in combination with a fairly large coupling strength � con-
tributes to large coupling terms ���x2−x1� and ���x1−x2�. As
a result the slow manifold gets such deformed that the exci-
tation threshold is effectively shifted toward larger activator
amplitudes. Notably the position and radius of the small-
amplitude limit cycle are virtually unaffected by the coupling
term. Thus overcoming the excitation threshold is inhibited.
This feature is illustrated in the insets in Fig. 5 where the
projections of the solution on the x1−y1 plane together with
the nullclines y1=x1−x1

3+���x2−x1� for two fixed values of
x2�t� are displayed ��a��. In the case of the nullcline labeled
as N1 the variable x2 is fixed at its minimal −0.533 value
while N2 is drawn at maximal x2=−0.720. Thus, N1 and N2
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FIG. 5. �Color online� Projection of the solution on the x1−x2

plane with parameters as in Fig. 4 except for fixed coupling strength
�=5. The dashed line separates those ranges for which the solution
lies beneath �red�, respectively, above �blue� the slow manifold y1

=x1−x1
3+���x2−x1� �a� and y2=x2−x2

3+���x1−x2� �b �. The inset in
�a� shows the projection of the solution on the x1−y1 plane together
with the nullclines N1 and N2 for fixed values of x2. The former
�latter� corresponds to the case when the activator variable x2 attains
its maximum −0.533 �minimum −0.720�. Likewise in the inset in
�b� except that the x2−y2 projection of the nullclines N1 and N2

belong to the minimum and maximum of the x1 variable,
respectively.
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restrict the range within which the nullcline y1=x1−x1
3

+���x2−x1� experiences deformations induced by the dy-
namical changes of x2�t�. �Equivalently, the inset in the lower
panel characterizes the behavior on the x2−y2 plane.� Appar-
ently, the solution remains trapped on the small-amplitude
limit cycle.

Contrary to this behavior the dynamics for another ran-
dom choice of the amplitudes and phases of the driving term
suprathreshold oscillations are maintained and spiking is
supported in the entire range of coupling strengths. The cor-
responding stroboscopic plots are contained in Fig. 6. For
��7 the two activator variables perform mutually synchro-
nous motions. Again we quote the differences of the driving
forces’ amplitudes A1−A2=−0.003 and phases �1

0−�2
0

=−0.016.

2. Degree of spike synchrony

To quantify how synchronous the firing of the coupled
units occur we use as a measure of spike synchrony the
cross-correlation between spikes �39,40�. This method is
based on the generation of trains of square pulses from the
activator signal. To this end a pulse of height unity was
placed on the time axis at moments of firing �i.e., when the
activator variable exceeds a certain value with definite sign
of its derivative� such that the latter constitute the center of
the pulse. The width of a pulse was taken as 20% of the
smallest firing period. Obtaining the cross-correlation of the
pulse trains is equivalent to computing the area that is shared
between the pulses associated with the two units. The degree
of spike synchrony is then evaluated as the sum of the shared
areas divided by the square root of the product of the total
areas of each individual pulse train. Clearly, full asynchrony
yields measure zero while perfect spike synchrony corre-
sponds to measure unity. We emphasize that synchrony in the
sense defined above relies on the simultaneous firing events
of coupled units. This has to be distinguished from the syn-
chrony measure used in the theorem of complete synchroni-
zation in Sec. II which puts a stronger request on the dynam-
ics meaning that the difference between two neighboring
trajectories vanishes asymptotically which does not necessar-
ily involve that the coupled units spike at all. In what follows
we refer to spike synchrony simply as synchrony.

The computation of the degree of synchrony is performed
for an interval of 200 time units involving at least 25 spike
events. For low coupling strength ��1 the beginning of the
interval is taken after a sufficient long time after the
switch-on of the coupling so that contributions of transients
are omitted. For moderate and strong coupling ��1 the syn-
chronized state of coherent spiking is attained almost instan-
taneously. In Fig. 7 the synchrony measure versus coupling
strength associated with the coupled dynamics in Figs. 4 and
6 is shown. Only in the coupling range when the spiking
dynamics is chaotic one finds synchronous behavior. Sup-
pression of �complete� spike synchrony in the phase-locked
regime is due to the fact that the motion of the two FHN
units is actually out-of-phase as it is the case in the coupling
range 0.46���2.38 in Fig. 4. In some intervals the degree
of synchrony possesses a sensitive dependence on the cou-
pling strength �see Fig. 7�b� for �	4.9� so that the corre-

sponding graph has a complex structure. There are values of
� for which a fairly high degree of synchrony is found
whereas for slightly deviating couplings the dynamics can be
significantly less synchronous if not completely asynchro-
nous. This sensitivity of the synchrony feature with respect
to the coupling strength can be found on finer and finer
scales on the � axis which is characteristic of a fractal struc-
ture. Interestingly, for the case illustrated in Fig. 7�b�, almost
complete synchrony, i.e., the dynamics of the two systems is
identical at any moment of time, is accomplished for ��7
even though the dynamics is irregular. An example of the
temporal behavior of chaotic synchronization of two coupled
units is seen in Fig. 8. Notice that after the switch-on of the
coupling of moderate strength �=1 the synchronized state is
almost instantaneously attained.

To explore how heterogeneity in the parameters of the
driving forces influences the synchronization features we
show in Fig. 9 the degree of synchrony versus the coupling
strength and the difference of either the drivers’ amplitudes
A1−A2 or phases �1

0−�2
0, respectively. The graphs are gen-
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FIG. 6. �Color online� As in Fig. 4 but for another sample of
amplitudes A1=0.721, A2=0.724 and phases �1

0=1.494 and �2
0

=1.649.
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erated by integrating the coupled dynamics for 1000 realiza-
tions of random amplitudes and phases and at the end of the
simulation time for every sample the degree of synchrony is
plotted. The graphs possess reflection symmetry with respect
to the lines �1

0−�2
0=0 and A1−A2=0, respectively. For cou-

plings ��4 in a broad range of amplitude and phase differ-
ences the coupled dynamics attains a synchronized state of
fairly weak degree of synchrony. For larger coupling
strengths synchronization is realized only in confined ranges
of the amplitude and phase differences. This is mainly due to
the raising number of events of firing death. For strong cou-
pling the major contribution to the pronounced synchrony
stems from small phase differences ��1

0−�2
0� being attributed

to the fairly broad central tongue in Fig. 9. There occur gaps
associated with asynchrony at intermediate phase differences
while thin tongues corresponding to strong synchrony result
at phase differences for which �1

0 is close to 2� and �2
0�0

or vice versa, viz., the two driving forces act almost in phase.
Equivalent behavior is reflected in the graph of synchrony
versus the amplitude difference A1−A2 and the coupling
strength. The left, central, and right tongue in Fig. 9�b� be-
long to their respective counterpart in Fig. 9�a�. Incidentally,
the amplitude and phase differences for the example illus-
trated in Figs. 4 and 6 fall into one of the gaps of asynchrony
and tongues of synchrony respectively which occur at large
coupling strengths in Fig. 9.

3. Phase coherence

Spike synchronization necessitates that at least during the
periods of firing activity the phases of the FHN units are
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FIG. 8. �Color online� Example of chaotic synchronization of
two FHN units. In the interval 0	 t�50 the units are uncoupled,
i.e., �=0. The vertical line at t=50 indicates the moment of the
switch-on of the coupling of strength �=5. Remaining parameters
as in Fig. 7�b�.
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synchronized. It is illuminative to consider in the following
the dynamics of the phases which serves especially to under-
stand the ramification of the phase difference ��0=�1

0−�2
0

on the onset of spike synchronization. To this end we intro-
duce the angle variable �1,2�t� which can be treated as an
estimate of the phase variable �42,43� for rotations around
the stable fixed point �x0 ,y0� in the x−y plane. Shifting the
origin of the plane to �x0 ,y0� and passing to polar coordi-
nates we define

�1,2�t� = tan−1�x1,2�t�/y1,2�t�� . �22�

In Fig. 10 the time evolution of the phase difference
���t�=�1�t�−�2�t�−��0 is depicted with amplitudes A1,2

and phases �1,2
0 taken from the two examples of Figs. 4 and

6. In the former case we notice low degree of synchrony for
small � and firing death for big � while in the latter case
even complete chaotic synchronization results for strong
coupling �see also Fig. 7�. For �=0 the phase difference
grows in the course of time in both cases. For rather big
stimulus phase difference ��0=−1.621 ��a�� the phase dif-
ference of the signal ���t� grows on the average almost
linearly. In comparison for a small stimulus phase difference
��0=−0.016 ��b�� the growth is not as pronounced as in the
previous case. Moreover, temporarily the signal phase differ-
ence essentially does not grow and rather oscillates irregu-

larly around a plateau. When coupled with strength �=2.9
the phase differences behave completely different. The cou-
pling is switched on at t=25. In the case of rather big ��0

=−1.621 ��a�� for the phase difference ���t� still unbounded
growth is obtained and the firings of the two FHN units
evolve accordingly asynchronously �see Fig. 4�. For a small
value of ��0=−0.016 ��b�� extended intervals of phase en-
trainment result which are interrupted by occasional sudden
up-and-down jumps. Most importantly, in the last case the
�partial� phase synchronization is connected with spike syn-
chronization �see Fig. 6� albeit with a rather low degree of
synchrony of 0.249. The histograms of the phase difference
taken modulo 2� are shown in Fig. 11. For inhibited syn-
chronization features corresponding to the behavior shown in
Fig. 10�a� the distribution of the phase difference exhibits a
maximum around an intermediate value 0.3 whereas in the
case for which synchronization is supported �see Fig. 10�b��
the distribution of the phase difference has a pronounced
maximum near zero and two smaller peaks around �. For
stronger couplings ��2.9 phase synchronization gets im-
proved compared to the behavior in Fig. 10 and eventually as
a result of strong enough coupling complete phase synchro-
nization is observed so that the degree of synchrony is en-
hanced too.

In the case of driving with only random amplitudes but
fixed phase strong synchrony yields irrespective of the am-
plitude heterogeneity for large coupling strengths as seen in
Fig. 12. In particular we do not notice events of firing death.

4. Statistical properties of spiking sequences

In order to characterize the variability of spiking se-
quences �interspike intervals� we compute the coefficient of
variation CV and the firing rate � �44�. Denoting with t0

�i�

� t1
�i�� ¯ � tKi

�i� series of firing times of xi the interspike in-

tervals are defined as Tk
�i�= tk

�i�− tk−1
�i� �k=1,2 , . . . ,Ki�. The co-

efficient of variation is given by
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FIG. 10. �Color online� Temporal behavior of the phase differ-
ence ��. �a� ��b�� Parameters as in Figs. 4 and 6 except for the
values of the coupling strength as indicated in the plot.
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FIG. 11. �Color online� Histograms of the phase difference
�� /2� for the coupled dynamics with �=2.9. The label �1� corre-
sponds to the behavior marked with �=2.9 in Fig. 10�b� and label
�2� to those marked with �=2.9 in Fig. 10�a�.
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CV =
���Tk

�i��2� − �Tk
�i��2

�Tk
�i��

, �23�

with

��Tk
�i��n� =

�
i=1,2

�
k=1

Ki

�Tk
�i��n

�
i=1,2

Ki

. �24�

For a strictly periodic process the CV is zero and hence, the
smaller the CV the more coherent the spike sequence.

The firing rate of a unit is defined as the average fre-
quency of firing during one period T of the external driving

� =
TM

�
n=1

M

Tn

, �25�

where M and Tn denote the number of periods and the nth
interspike interval of the considered unit, respectively. The
mean degree of synchrony, the coefficient of variation and
the firing rate computed as the average over 500 samples
with random values of phases and/or amplitudes of the driv-
ing force as a function of the coupling strength are illustrated
in Fig. 13. In the case of randomly distributed amplitudes but
equal phases of the driving terms enlarging the coupling
strength leads to rather rapidly and monotonically growing
degree of synchrony up to a value 0.8 in the coupling range
0���6.2. Upon further increase of � synchrony rises only
weakly.

In the other case, namely, random amplitudes together
with random phases increasing the coupling up to ��1 im-
proves more rapidly synchrony than in the previous case. For
��1 there follow a break down and an interlude of nearly
constant low synchrony at the end of which at ��4.2 with
little further increase of � the synchrony steeply rises again
to a maximum value. However, enlarging � beyond the value
6 results in slow but gradual decline of synchrony. This
shows that for high amount of heterogeneity strengthening
the coupling does not necessarily entail better synchrony and

rather the opposite is true. Interestingly in the weak coupling
range ��1 strong heterogeneity in the forcing, viz., with
random amplitudes and phases, sustains better synchrony
than driving with random amplitudes but constant phase.

We remark that for the case of forcing with fixed ampli-
tude taken from the interval �0.70, 0.79� and random phases
�not shown here� we obtain results that are similar to the
ones of driving with random amplitudes and random phases.
Hence, the phase relation between the driving terms crucially
governs the ability to synchronize the spiking events. We
underline that even if the two units fail to completely syn-
chronize their firing events, they nonetheless might become
mutually amplitude-locked to subthreshold oscillations
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though as it is, e.g., the case illustrated in Fig. 4�a� for strong
enough coupling.

For driving with random amplitudes but fixed phase the
CV grows monotonically for low couplings reaching a maxi-
mum at ��1.7 �see Fig. 13�b��. With further enlarged � the
CV drops and settles eventually for ��5 on a plateau. In
contrast to that is the behavior of the CV in the case of
forcing with random amplitudes and random phases �see Fig.
13�a��. Here the CV is even lowered with increasing coupling
until ��3.5 apart from the small growth for ��1. In the
range 3.5���4.5 there follows a stage of sudden rise and
subsequent fall of the CV and for ��5 the CV weakly grows
but notably, stays below the corresponding values found for
driving with random amplitude and fixed phase. Conclu-
sively, the trend to more enhanced chaotic synchronization
upon enlarging the coupling strength is not necessarily con-
nected with higher regularity in the corresponding spike
trains compared to the irregularity in the spike trains of
weaker synchronized states. Different behavior was observed
for two coupled Hindmarsh-Rose neurons where the com-
plexity of the time-interval sequences gets simpler the stron-
ger the coupling �41�.

The firing rate does not exhibit a pronounced dependency
on the coupling strength and hence, the mean length of the
�irregularly distributed� interspike intervals is more or less
insensitive to changes of �. The attainment of complete syn-
chrony with increasing coupling strength is also confirmed
by a gradually diminishing mean distance between the tra-
jectories of the two units

d̄ =
1

N
�
n=1

N

��xn − xn−1�2 + �yn − yn−1�2, �26�

as is seen in Fig. 14. Already for �=10 the distance between
the two trajectories has shrunk significantly and if the cou-
pling strength is increased toward the one predicted by the
theorem in Sec. II the distance further diminishes so that
complete synchronization is indeed achieved. We remark that

the coupling strengths �	10 considered in this work are still
small compared to the coupling strength that guarantees ac-
cording to the theorem in Sec. II complete synchronization.
The latter value is of the order of ��100. The synchroniza-
tion features are conveniently summarized by projecting
stroboscopic plots of the dynamics onto the x1−x2 plane. In
Figs. 15 and 16 the dynamics of an ensemble of 500 samples
of random amplitudes and/or phases are superimposed on
one plane. In addition the corresponding synchronization
measure is indicated in the plots. As Fig. 15 reveals with
random phases the projection of the attractor of the un-
coupled dynamics provides a widespread pattern of points
that are scattered all over the plane attributed to noncoherent
evolution of the two subsystems �see Fig. 15�a��. When the
phases are fixed the attractor consists of several groups of
clouds that altogether occupy less area on the plane com-
pared to the previous case �see Fig. 15�b��. Two groups of the
clouds are distributed around the main and secondary diago-
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FIG. 14. �Color online� Mean distance between the trajectories
of the two units as a function of the coupling strength. Averages
were performed over 500 realizations of random values for the am-
plitudes and phases. Blue solid line: Random amplitudes and ran-
dom phases. Red dashed line: Random amplitude and fixed phase
�0=0. Parameters as in Fig. 13.
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nal respectively indicating that there exists coupled dynamics
being not too far from in-phase and out-of-phase motion of
the activators, respectively.

With switched on strong coupling the dynamics is trig-
gered in the regime of coherent motion. Especially in the
case of fixed phases and random amplitudes virtually all
points come to lie on the main diagonal being associated
with full synchrony �see Fig. 16�b��. In comparison random
phases lead to an attractor that, apart from few points, is
confined to the neighborhood of the main diagonal. How-

ever, pronounced synchronization is inhibited as indicated by
the synchronization measure in the figure �see Fig. 16�a��.

IV. SUMMARY

We have investigated the synchronization properties of
two coupled FHN units in an excitable regime. Interest is
focused on the response of the interacting units to heteroge-
neous external inputs. Imposing the inhibitor variable of each
FHN unit to a periodic and parametric force chaotic firing
events are generated. Furthermore, due to random choices of
the amplitudes and/or phases of the two external forces the
firings of the units occur mutually asynchronous for the un-
coupled dynamics.

When the coupling between the two units is turned on we
have observed that for low amount of heterogeneity, viz., for
driving with only dispersed amplitudes but equal phases, the
degree of synchrony gets enhanced with growing coupling
strength. Despite the improvement of synchrony upon en-
larging the coupling strength the spiking sequence �inter-
spike interval� remains irregular though which is reflected in
a fairly large coefficient of variation. This has to be differen-
tiated from the results in Ref. �41� concerning the irregular
dynamics of two coupled neurons where the complexity of
the time-interval sequences gets the more regular the stron-
ger the coupling is.

In clear contrast, for higher amount of heterogeneity, that
is forcing with dispersed amplitudes together with dispersed
phases, the degree of synchrony cannot be improved beyond
a certain maximal degree by enlarging the coupling strength.
Moreover, if the difference between the phases and/or the
amplitudes of the tow driving forces exceeds a critical value
synchrony is excluded for too strong couplings. In the latter
case we have found that the coupled units annihilate mutu-
ally their firings due to a coupling-induced modification of
the excitation threshold. We call this phenomenon “firing
death” in accordance with the effect known as oscillation
death, occurring when units of oscillatory networks recipro-
cally annihilate their oscillations for overcritical coupling
strength �35�. Nevertheless in the absence of synchrony the
units perform completely synchronous subthreshold oscilla-
tions for strong enough coupling as it is also confirmed by
our corresponding synchronization theorem.
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